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Abstract


Signal processing plays an important role in modern society: Its applications span
a comprehensive domain from automotive to entertainment industry, from medical
diagnostic technology to communication services. Signals are electrical information
that represents acoustical, optical or other data, like brain waves (EEG) or geophysical data, whose values exhibit a certain variability in location and time. These electrical data are to be edited, filtered, amplified, denoised, interpolated, transmitted or
processed in some other way.




   Fourier analysis quickly established as a standard method in signal analysis. Mathematically, signals are represented as discrete periodic functions that are composed
   of pure oscillations with different frequencies and amplitudes, and the Fourier transform unveils in what amount what frequencies are contained in a signal. But time
   information gets lost thereby, what led to the idea of a windowed or short-time Fourier
   transform (STFT), where only short time-intervals in the signal undergo a Fourier
   transform, cut out by a smooth window function that is subsequently shifted over the
   signal. However, the time-frequency information that the STFT provides is highly
   redundant, and a reduction is sought while preserving the complete time-frequency
   behavior of a signal.





Digital images can be handled just like digital sound signals, they’re representable
as a sum of pure two-dimensional (2D) oscillations. Mathematically, there is no distinction at all, as the theory is developed in general function spaces. But it can be
confusing in practise to talk about the time-frequency analysis of images, as the image
signal does not evolve in one-dimensional time, but on a two-dimensional plane. Furthermore, the time-frequency plane becomes a four-dimensional position-frequency
space, what makes it difficult to produce descriptive graphs of windowed 2D Fourier
transforms of images. Nevertheless, mathematically the terms time and frequency are
handled in arbitrary dimensions.





   The problems that emerge in signal analysis nourish a standard task in mathematical analysis, namely that of describing arbitrary functions by the help of a set of
   simple functions that possess well-known and easy-to-handle analytical properties.
   Fourier analysis fulfills this by expanding a signal into a sum of elementary oscillations. The STFT equivalence is to use a sufficient set of time-frequency shifts of a
   single window function instead. The concern about when the emerging analysis and
   synthesis operations are reasonable is handled by the theory of frames, a generalization of the concept of bases. Gabor analysis unites these mathematical approaches: It
   yields conditions for a set of time-frequency shifted window functions to be a frame
   for the signal space and provides an understanding of signals by expanding them into
       a sum of those elementary shifted and modulated atoms.





   This thesis wants to examine how the concepts of Gabor analysis apply to the
   case of digital images and what new problems emerge compared to one-dimensional
   signals. The following paragraphs summarize how this work is organized.





   Chapter 1 is a summary of the foundations of time-frequency analysis. The Fourier
   transform and STFT are introduced in general function spaces that possess an inner
   product and are thus equipped with some kind of geometry. It makes sense to only
   consider functions of finite energy, making the space of square-integrable functions,
   L2(Rd), the candidate of choice.





   Chapter 2 introduces the concept of frames in general (separable) Hilbert spaces.
   The special case of Gabor frames is again treated in L2(Rd). It is explained that
   Gabor expansions consider two window functions: The analyzing prototype and its
   reconstructing dual that is dependent on the chosen subgroup of the time-frequency
   plane. Whereas signal processing previously was of the time-continuous analog type,
   it has changed to a finite time-discrete model today due to the high availability of
   digital computers. The chapter ends with the necessary step to a time-discrete signal
   model.





   Chapter 3 is dedicated to finite discrete Gabor frames for a finite discrete periodic
   signal model, eventually enabling computational implementations. A finite sequence
   of real or complex values can be represented as a vector, where the dimensionality of
   the emerging signal space should not be confused with the one-dimensionality of the
   vector shape. Things become related to terms of linear algebra, and the matrix representation of frames is introduced. Finally, dual Gabor windows on general sampling
   subgroups are shown that possess a significant non-zero imaginary part.





   Chapter 4 takes the step from 1D signals to 2D images. It explains how images
   are represented in digital computers. The chapter provides an understanding of 2D
   elementary oscillations and the idea of 2D frequencies. The 2D Fourier transform unveils to what extent low frequencies contribute to the homogeneous areas in natural
   images and how higher frequencies are responsible for contours, edges and sharpness. Then the author provides a way of how to visualize the 4D position-frequency
   behavior of an image by presenting a collection of 2D images. The chapter ends with
   a treatment of 2D windows for the 2D STFT of images.





   Chapter 5 finally comes to Gabor expansions of images. It turns out that the possible non-separability of 2D windows intervenes with the various depths of the non-separability of 4D sampling subgroups. The following sections reflect the order of
   increasing difficulty for computational implementations, going from twofold separability (of both 2D atom and 4D lattice) to true non-separability (of both atom and
   lattice). All cases are accompanied by numerical experiments with Gabor coefficient
   thresholding. Separable atoms allow for the consideration of tensor products of two
   1D frames. The case of fully separable lattices allows for an efficient Gabor expansion
   by using the sampled 1D STFT. The involvation of non-separable subgroups leads to
   2D duals with non-zero imaginary parts as well. Under certain conditions general 2D
   atoms on 4D grids can be mapped to a 1D case. Finally, an approach for obtaining
   quicker 2D Gabor expansions is provided by signal downsampling.





“Serious” image processing is not treated in this thesis, as implementations that
involve Gabor systems had to be compared with approved existing methods. This
work thus ends by providing references to literature that consider image processing
methods by Gabor expansion, and lists some questions for further research.





  The published numerical computations were performed on a PC using a single
  1.6 GHz CPU and 1 GB RAM. The experiments were implemented in
  MATLAB 7 and Octave 2.9 on the Debian GNU/Linux operating system
  (‘lenny’, Kernel 2.6) and
  involved functions from the NuHAG MATLAB toolboxes. All figures were produced
  with MATLAB or The GIMP. The typesetting was done in LATEX.
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